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Why reduced order modeling?

• High-fidelity simulations are
nice, but often involves
extreme-scale nonlinear
evaluations (Example).

• Reduced order modeling
(ROM) enables real-time
simulation and analysis as
well as the exploration of
parameter spaces in
many-query contexts.
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Why entropy stability?

(a) Exact solution (b) High order DG

High order methods blow up for under-resolved solutions of nonlinear
conservation laws (e.g., shocks and turbulence).
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Entropy stability for nonlinear problems

• Energy balance for nonlinear conservation laws (Burgers’,
shallow water, compressible Euler + Navier-Stokes).

∂u

∂t
+

d

∑
i

∂fi(u)

∂xi
= 0.

• Continuous entropy inequality: convex entropy function S(u),
“entropy potential” ψ(u), entropy variables v(u)

∫
Ω
vT
(
∂u

∂t
+

d

∑
i

∂fi(u)

∂xi
) = 0, v(u) =

∂S

∂u

Ô⇒ ∫
Ω

∂S(u)

∂t
+

d

∑
i

(vT fi(u) − ψi(u))∣
1

−1
≤ 0.
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Talk outline

1. Mode construction for 1D periodic domain

2. Model construction for 1D domain with weakly imposed
boundary conditions

3. Extension to domain with higher dimensions (with Carathéodory
pruning)

4. Numerical experiments



Mode construction for 1D periodic
domain
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Local formulation

• Domain Ω (1D) is decomposed into k elements, each with Np

(Gauss-Lobatto) interpolation degree.

• A local DG formulation on element Dk is

JkMloc
duk

dt
+ ((Qloc −Q

T
loc) ○F

k
)1 +Blocf

∗
= 0,

f∗ = [fS(u
+

1,k,u1,k) 0 ⋯ 0 fS(u
+

Np,k
,uNp,k)]

T
.

For periodic boundary condition,

u+1,1 = uNp,K , u+Np,K = u1,1.

• Summation-by-parts (SBP) property: Qloc +Q
T
loc = Bloc.



6 / 41

Global formulation

• ROM necessitates global formulation. Denote global solution
vector u = [u1,u2, ...,uK]

T . A global formulation is

M
du

dt
+ 2(Q ○F)1 = 0,

M = I⊗Mloc, F =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

F11 ⋯ F1K

⋮ ⋱ ⋮

FK1 ⋯ FKK

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

Q =
1

2

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

S BR −BL

−BL S BR

−BL ⋱ BR

BR −BL S

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, S = (Qloc −Q
T
loc),

BL =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1

⋰

0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, BR = B
T
L =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0

⋰

1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.
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Entropy stability

• The two-point flux fS(uL,uR) is entropy-conservative if it
satisfies

fS(u,u) = f(u), (consistency)

fS(uL,uR) = fS(uR,uL), (symmetry)

(vL − vR)
T fS(uL,uR) = ψ(uL) − ψ(uR), (conservation)

• We can prove a semi-discrete entropy conservation condition

1TM
dS(u)

dt
= 0,

using the fact that Q is skew-symmetric (Q = −QT ) and has
zero row sums (Q1 = 0).

Tadmor (1987). The numerical viscosity of entropy stable schemes for systems of conservation laws.
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Entropy stability - proof

Testing global formulation with entropy variable v = v(u),

vTM
du

dt
+ 2vT

(Q ○F)1 = 0.

Assuming time continuity, then

vTM
du

dt
=∑

i

Mi,iv
T
i

dui

dt

=∑
i

Mi,i(
dS(u)

du
)
T
i

dui

dt

=∑
i

Mi,i
dS(ui)

dt

= 1TM
dS(u)

dt
,
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Entropy stability - proof

It is left to show the flux term goes to 0 (with entropy conservative
flux).

2vT
(Q ○F)1 =∑

ij

vT
i 2QijfS(ui,uj)

=∑
ij

(Qij −Qji)v
T
i fS(ui,uj)

=∑
ij

Qij(vi − vj)
T fS(ui,uj)

=∑
ij

Qij(ψ(ui) − ψ(uj))

= ψTQ1 − 1TQψ

= 0.
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Reduced order model - POD method

• Denote {ϕj(xi)}
N
j=1 as our reduced basis, VN as the general

Vandermonde matrix (VN)ij = ϕj(xi).

• Various techniques to construct VN - we use proper
orthogonal decomposition (POD).

• Vsnap = UΣV T , VN = U[∶,1 ∶ N].

Liang et al. (2000) Proper orthogonal decomposition and its applications-Part I: Theory.
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Reduced order model - Galerkin projection

Galerkin projection ROM (u ≈VNuN ):

VT
NMVN

duN

dt
+ 2VT

N(Q ○F)1 = 0. (1)

Two issues:

• Not entropy stable.

• No necessarily less computational cost.

Rowley et al. (2004) Model reduction for compressible flows using POD and Galerkin projection.
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Reduced order model - entopy stability

Testing (1) with vN and following same steps in prior proof, we can
get to a point that

ṽT
(Q ○F)1 =

1

2
∑
ij

Qij(ṽi − ṽj)
T fS(ui,uj)

≠
1

2
∑
ij

Qij(ψ(ui) − ψ(uj)),

where ṽ =VNvN .
Why: ṽ(⋅) and u(⋅) are no longer coupled mappings.
Solution: new mapping

ũ = u(VNV†
Nv(VNuN)) = u(ṽ).
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Entropy stable reduced order model

The final entropy stable ROM is

MN
duN

dt
+ 2VT

N(Q ○F)1 = 0,

MN =V
T
NMVN , Fij = fS(ũi, ũj),

ũ = u(VNV†
Nv(VNuN)).

(2)

Still has high computational cost! Hyper-reduction on flux term is
necessary to reduce computational cost.
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Hyper-reduction - main idea

• Main idea: weighting and sampling strategy

VT
Ng(VNuN) ≈ V̄

T
NWg(V̄NuN), V̄N =VN(I , ∶)

Ô⇒ VT
N(Q ○F) ≈ V̄

T
NW(Q̄ ○ F̄).

Still entropy stable if Q̄ is skew-symmetric and has zero row
sums.

• To maintain these properties of Q̄, we must apply a two-step
hyper-reduction.

Farhat et al. (2015) Structure-preserving, stability, and accu- racy properties of the energy-conserving
sampling and weighting method for the hyper reduction of nonlinear finite element dynamic models.

Chapman et al. (2017) Accelerated mesh sampling for the hyper reduction of nonlinear computational
models.
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Two-step hyper-reduction: compress and project

Compression: Galerkin projection with expanded basis approach.

Vt: a test basis such that R(VN) ⊂ R(Vt).
The intermediate reduced operator is defined as

Qt =V
T
t QVt.

By construction, Qt is skew-symmetric.

One can show, if 1 lies in the span of the test basis (1 =Vte for
some coefficient vector e) then

Qte = 0.
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Two-step hyper-reduction: compress and project

Projection: construct test mass matrix

Mt = V̄tWV̄t, V̄t =Vt(I , ∶).

Then we can construct a projection matrix

Pt =M
−1
t V̄T

t W.

Suppose f = V̄tc for some coefficients c, then

Ptf =M
−1
t Mtc = c.

Finally, hyper-reduced differential matrix

Q̄ = PT
t QtPt = (M

−1
t V̄T

t W)
T
(VT

t QVt)M
−1
t V̄T

t W.
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Entropy stability and choice of test basis

Q̄ is skew-symmetric by construction. If 1 lies in the span of test
basis, 1 = V̄te and Qte = 0 for some coefficient e. Then,

Q̄1 = PT
t Qte = 0.

Thus, the test basis must span 1 and VN . We also enhance it with
QVN to accurately evaluate derivatives. In the absence of
hyper-reduction, this projector ensures that:

Pt =V
†
t Ô⇒ Q̄VN = (VtV

†
t)

TQVtV
†
tVN =QVN .
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Algorithm and target space

Numerous methods to select hyper-reduced nodes. We developed
greedy algorithm from empirical cubature. The algorithm produces
an index set and corresponding new weights such that:

VT
targetwtarget ≈Vtarget(I , ∶)

Tw.

This algorithm selects the row index that positively aligned with the
residual and subsequently computes the weight vector that
minimizes the residual using a non-negative least squares solver. It
terminates when the norm of the residual falls below

tol =

¿
Á
Á
ÁÀ(

M

∑
j=N+1

σ2j )/(
M

∑
j=1

σ2j ).

Hernádez et al. (2017) Dimensional hyper-reduction of nonlinear finite element models via empirical
cubature.
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Stabilization points

• Three options for Vtarget: VN ○VN , VN ○Vt, and Vt ○Vt.

• If singular test mass matrix V̄T
t WV̄t: add "stabilization"

points.
Construct matrix Z from the eigenvectors

Z = [Vtz1 ⋯ VtzNz] ,

Approximating ZTWZ ensures non-singularity. Set

Ztarget = Z(∶, i) ○Z(∶, j).

We then obtain an additional set of nodes, and then
recalculate weights from

w = argmin
c≥0

1

2
(∣∣Vtarget(I, ∶)

T c−b∣∣2+αZ ∣∣Ztarget(I, ∶)
T c−d∣∣2),

where d = ZT
targetwtarget.
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Summary of offline hyper-reduction

1. Compute a N−mode reduced basis matrix VN from solution
snapshots of both conservative and entropy variables in full
order model.

2. Compute a test basis matrix Vt such that
R(Vt) = R(1, VN , QVN), and compute test matrix
Qt =V

T
t QVt.

3. Compute a hyper-reduced quadrature using greedy algorithm
to obtain a set of hyper-reduced nodes I and new quadrature
weights w, with stabilizing points if necessary to ensure that
the test mass matrix Mt = V̄tWV̄t is non-singular.

4. Construct the hyper-reduced nodal differentiation matrix
Q̄ = PT

t QtPt using the projection Pt =M
−1
t V̄T

t W onto the
test basis.
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Hyper-reduced ROM

The final ROM with hyper-reduction

M̄N
duN

dt
+ 2V̄T

N(Q̄ ○F)1 = 0

V̄N =VN(I, ∶), M̄N = V̄
T
NWV̄N ,

P = M̄−1
N V̄T

NW, vN = Pv(V̄NuN),

ṽ = V̄NvN , ũ = u(ṽ), Fij = fS(ũi, ũj),

(3)

which semi-discretely conserves the sampled and weighted average
entropy

1TW
dS(V̄NuN)

dt
= 0.



Model construction for 1D domain
with weakly imposed boundary
conditions
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Global formulation

From local formulation,

M
du

dt
+ 2(Q ○F)1 +B(f∗ − f(u)) = 0, (4)

where Q is now

Q =
1

2

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

S BR

−BL S BR

−BL ⋱ BR

−BL S

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+
1

2
B,

satisfying SBP property Q +QT = B.

The formulation is entropy conservative if we use entropy
conservative boundary flux.

Chen and Shu. (2017) Entropy stable high order discontinuous galerkin meth- ods with suitable
quadrature rules for hyperbolic conservation laws.
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Hybridized operator

Q̄ does not satisfy SBP property. Instead,

Q̄ + Q̄T
= ETBwE, Q̄ = PT

t V
T
t QVtPt,

where in 1D

Bw = [
−1

1
] , E =VbtPt, Vbt = [

Vt(1, ∶)

Vt(N, ∶)
] .

To impose nonlinear boundary conditions, we employ a hybridzed
SBP operator

Qh =
1

2
[
Q̄ − Q̄T ETB

−BE B
] ,

satisfying a block SBP property

Qh +Q
T
h = [

0

B
] = Bh.

Chan. (2018) On discretely entropy conservative and entropy stable discontinuous galerkin methods.



24 / 41

Hyper-reduced ROM

One can show

Qh1 =
1

2
[
Q̄1 − Q̄T1 +ETB1

−BE1 +B1
] = 0.

Denote

Vb = [
VN(1, ∶)

VN(Np, ∶)
] , Vh = [

V̄N

Vb
] .

Then we can build the following hyper-reduced ROM

M̄N
duN

dt
+ 2VT

h (Qh ○F)1 +V
T
b B(f

∗
− f(ũb)) = 0

V̄N =VN(I, ∶), M̄N = V̄
T
NWV̄N , , P = M̄−1

N V̄T
NW,

vN = Pv(V̄NuN), ṽ =VhvN , ṽb =VbvN ,

ũ = u(ṽ), ũb = u(ṽb), Fij = fS(ũi, ũj).

(5)
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Hyper-reduced ROM - entropy stability

By the block SBP property of Qh, formulation (5) is equivalent to

M̄N
duN

dt
+VT

h ((Qh −Q
T
h ) ○F)1 +V

T
b Bf∗ = 0, (6)

which admits entropy conservation for boundary entropy
conservative flux

1TW
dS(VNuN)

dt
= 0.

Proof: Testing (6) with vN ,

1TW
dS(VNuN)

dt
+ ṽT

((Qh −Q
T
h ) ○F)1 + ṽ

T
b Bf∗ = 0.
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Hyper-reduced ROM - entropy stability

ṽT
((Qh −Q

T
h ) ○F)1

=
1

2
∑
ij

(Qh −Q
T
h )ij(ṽi − ṽj)

T fS(ũi, ũj)

=
1

2
∑
ij

(Qh −Q
T
h )ij(ψ(ũi)) − ψ(ũj))

= ψ(ũ)TQh1 − 1
TQhψ(ũ)

= −1TBhψ(ũ)

= −1TBψ(ũb),

Ô⇒ 1TW
dS(VNuN)

dt
− 1TB(ψ(ũb) − ṽ

T
b f
∗
) = 0.

With an entropy conservative boundary flux, ψ(ũb) = ṽ
T
b f
∗

1TW
dS(VNuN)

dt
= 0.



Extension to domain with higher
dimensions (with Carathéodory
pruning)
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Periodic domain - FOM

For a periodic domain with dimension d,

M
du

dt
+

d

∑
i=1

2(Qi
○Fi
)1 = 0, (7)

Complicated explicit form, but (for vectors u, v) satisfies

vTQiu =∑
k

(∫
Dk

∂u

∂xi
v + ∫

∂Dk

1

2
JuKniv). (8)

To prove entropy stability, one can show that Qi is skew-symmetric
and has zero row sums.
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Periodic domain - ROM

Applying hyper-reduction on each dimension to construct

Q̄i
= (Pi

t)
T
(Vi

t)
TQiVi

tP
i
t,

we get the entropy conservative hyper-reduced ROM

M̄N
duN

dt
+

d

∑
i=1

(2V̄T
N(Q̄

i
○Fi
)1) = 0

V̄N =VN(I, ∶), M̄N = V̄
T
NWV̄N ,

P = M̄−1
N V̄T

NW, vN = Pv(V̄NuN),

ṽ = V̄NvN , ũ = u(ṽ), Fi
jk = f

i
S(ũj , ũk).

(9)
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Domain with weak BC - FOM

We can extend (4) to higher dimensions

M
du

dt
+

d

∑
i=1

(2(Q ○F)1 +B(f∗ − f(u))) = 0, (10)

where Qi + (Qi)T = B.
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Domain with weak BC - ROM

Suppose we have similar hyper-reduction on boundary nodes
(Ib,wb), and denote

B̄i
= diag(ni

)Wb, Ēi
= V̄i

btP
i
t, V̄bt =Vbt(Ib, ∶).

The hybridized SBP operator for differentiation along the ith
coordinate is then

Qi
h = [

Q̄i − (Q̄i)T (Ēi)T B̄i

−B̄iĒi B̄i ] .

Hyper-reduced ROM:

M̄N
duN

dt
+

d

∑
i=1

(VT
h ((Q

i
h − (Q

i
h)

T
) ○Fi

)1 + V̄T
b B̄

if i,∗) = 0. (11)
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Hyper-reduction on boundary

In general,

Qi
h1 = [

Q̄i1 − (Q̄i)T1 + (Ēi)T B̄i1

0
] = [
−(Q̄i)T1 + (Ēi)T B̄i1

0
] ≠ 0.

Note
(Q̄i
)
T1 = (Ēi

)
T B̄i1 ⇐⇒ 1TQiVi

t = 1
T B̄iV̄i

bt,

We need to enforce this equality to preserve entropy conservation.
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Hyper-reduction on boundary

Approach 1: linear programming

minimize ∑
j=1

(wb)j

subject to V̄T
btdiag(ni)wb =V

T
t (Q

i)T1, i = 1, ..., d

wb ≥ 0.

Then use certain types of LP solvers (e.g. dual simplex).
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Carathéodory’s theorem

Carathéodory’s theorem states that, for any M -point positive
quadrature rule exact on space V with dim(V) = N , we can always
generate a new N -point interpolatory positive rule to preserve all
moments. In detail, suppose M ≥ N and for all n = 1, ...,N ∶

mn ∶= ∫ vn(x)dx =
M

∑
m=1

wmvn(xm), V = span{v1, ..., vN}.

This is equivalent to

Aw =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

v1(x1) v1(x2) ⋯ v1(xM)

v2(x1) v2(x2) ⋯ v2(xM)

⋮ ⋮ ⋱ ⋮

vN(x1) vN(x2) ⋯ vN(xM)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

w1

w1

⋮

wM

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=m,

with w ≥ 0, m is in the convex hull of 0 and the M columns of A.
Carathéodory’s theorem then states that m lies in the convex hull
of a subset of N columns of A.
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Hyper-reduction on boundary - Carathéodory pruning

Approach 2: Carathéodory pruning
Given A ∈ RM×N and w, we use pivoted QR update for pruning
through iterations 1 ∶M −N

• Determine null vector c using pivoted QR decomposition.

• Find indices for all positive components in c.

• Select α such that w − αc ≥ 0 and w(k0) = αc(k0).

• Execute pruning: remove k0-th entry in w and I and remove
k0-th row in A.
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Hyper-reduction on boundary - Carathéodory pruning

In our case,

1TBiVi
bt = ∫ ϕibt,j(xk)n

i
=

M≤2N+1

∑
k=1

wb,jn
i
jϕbt,j(xk).

In practice, if we only want a single set, we construct the input A
to concatenate all dimensions

A = [diag(n1)V1
bt ⋯ diag(nd)Vd

bt] .

Following the pruning process, we acquire the hyper-reduced
boundary weights wb along with node indices Ib.



Numerical experiments
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Example 1 - 1D Euler

(a) N = 25, T = .25
0 0.2 0.4 0.6 0.8 1

(b) N = 75, T = .25
0 0.2 0.4 0.6 0.8 1

(c) N = 75, T = .75
0 0.2 0.4 0.6 0.8 1

(d) N = 125, T = .75
0 0.2 0.4 0.6 0.8 1

2.0

2.1

2.2

2.3

2.0

2.1

2.2

2.3

2.0

2.1

2.2

2.3

2.0

2.1

2.2

2.3

Figure 1: 1D Compressible Euler. DoF 1280. Runtime T = 0.75. 400
snapshots.
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Example 1 - entropy condition

(b) Entropy dissipation(a) Convective entropy
0 0.25 0.5 0.75

10-16

10-14

10-15

0 0.25 0.5 0.75

0.0005

0.0010

0.0015

0.0020

25 modes
75 modes

125 modes

Figure 2: Convective entropy contribution ∣vT
NVT

h (Qh ○F)1∣ and
viscous entropy dissipation over time.
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Example 2 - sod shock tube

(a) N = 50, T = .25
-0.5 -0.25 0 0.25 1

(b) N = 250, T = .25

0.2

0.4

0.6

0.8

1.0

-0.5 -0.25 0 0.25 1

0.2

0.4

0.6

0.8

1.0

Figure 3: 1D sod shock tube. DoF 1280. Runtime T = 0.25. 400
snapshots.
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Example 3 - Kelvin-Helmholtz

(a) FOM

1.00

1.75

1.25

1.50

2.00

(c) N = 75, T = 3.0, with enrichment

1.00

1.75

1.25

1.50

2.00

(b) N = 75, T = 3.0, without enrichment

1.00

1.75

1.25

1.50

2.00

(d) N = 125, T = 3.0, with enrichment

1.00

1.75

1.25

1.50

2.00

Figure 4: 200x200 elements with Np = 4. 200 snapshots with entropy
enrichment.
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Example 4 - Gaussian in 2D

(a) FOM (b) N = 25, T = 1.0, with enrichment

0.95

1.10

1.00

1.05

1.15

0.90

0.85

0.80

0.95

1.10

1.00

1.05

1.15

0.90

0.85

0.80

Figure 5: 2D compressible Euler. Run time T = 1.0. 400 snapshots.
Boundary hyper-reduced by Catatheodory pruning.
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Summary and acknowledgement

In this work, we

• present an entropy stable reduced order modeling of nonlinear
conservation laws based on high order DG methods.

• develop structure-preserving hyper-reduction techniques
(Carathéodory pruning) which preserve entropy stability.
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