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Why entropy stable reduced order modeling (ROM)?

(a) Kelvin–Helmholtz instability (b) 1D Burgers’

• Extreme-scale nonlinear evaluations in high-fidelity simulations.

• ROM enables efficient many-query contexts.

• High order methods blow up around shocks and turbulence for
both full order models (FOMs) and ROMs.
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Entropy stability for nonlinear problems

• Energy balance for nonlinear conservation laws (Burgers’,
shallow water, compressible Euler + Navier-Stokes).
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• Continuous entropy inequality: convex entropy function S(u),
“entropy potential” ψ(u), entropy variables v(u)
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Talk outline

1. Full order model (FOM) construction

2. Reduced order model (ROM) construction

3. Numerical Experiments



Full order model (FOM)
construction
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Entropy stable high order DG formulation

• A global DG formulation of (1) is

M
du

dt
+

d

∑
i=1

(2(Qi ○Fi)1 +ETBi(f i,∗ − f i(u))) = dissipation,

where (Fi)j,k = f i(uj ,uk) is a matrix of nonlinear flux
evaluations, E is a boundary extraction matrix, and Qi is a
global summation-by-parts (SBP) operator
(Qi + (Qi)T = ETBiE) with zero row sum (Qi1 = 0).

• We can prove a semi-discrete entropy stability condition

1TM
dS(u)
dt

≤ 0.

Tadmor (1987). The numerical viscosity of entropy stable schemes for systems of conservation laws.
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An example of a global SBP operator

Spy plot of Q1 (1D domain, 3 elements with 5 nodes in each)



Reduced order model (ROM)
construction
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Galerkin projection ROM

• Galerkin projection ROM (VN is the POD basis):

MN
duN

dt
+

d

∑
i=1

(2VT
N(Qi ○Fi)1 +VT

b B
i(f i,⋆ + f i(uN))) = 0,

u ≈VNuN and Vb = EVN .

• To achieve entropy stability, use entropy projection

ũ = u(VNV†
Nv(VNuN)) = u(ṽ), (Fi)j,k = f i(ũj , ũk).

• Still has high computational cost! Needs hyper-reduction.
Hyper-reduction on volume and boundary terms are
independent.
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Hyper-reduction on volume terms

Main idea: find a set of volume nodes and positive weights (Iv,wv)

VT
Ng(VNuN) ≈VN(Iv, ∶)T diag(wv)g(VN(Iv, ∶)uN).

We use the greedy algorithm for empirical cubature.

Chan (2020). Entropy stable reduced order modeling of nonlinear conservation laws.

Hernádez et al. (2017) Dimensional hyper-reduction of nonlinear finite element models via empirical
cubature.
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Hyper-reduction on boundary terms

Assume hyper-reduction on boundary (Ib,wb) and denote

B̄i = diag(ni)diag(wb).

Suppose Vi is some ROM basis matrix for the ith coordinate,

1TQiVi = 1T B̄iVi(Ib, ∶),

is a matrix form of the fundamental theorem of calculus, and we
need to enforce this equality to preserve entropy stability.

A natural way to do this: Carathéodory’s pruning.
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Carathéodory’s pruning

Carathéodory’s theorem states that, for any M -point positive
quadrature rule exact on space V with dim(V) = N , we can always
generate a new N -point interpolatory positive rule to preserve all
moments.
In our case,

1TBiVi = ∫ ϕij(xk)ni =
M

∑
k=1

wb,jn
i
jϕj(xk).

In practice, we concatenate all dimensions

[diag(n1)V1 ⋯ diag(nd)Vd] ,

which yields O(dN) hyper-reduced positive boundary weights wb

and node indices Ib.

Courtesy of Dr. Akil Narayan (U. Utah)
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Numerical Experiments
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Example 1 - 1D Euler

(a) N = 20, T = .25
0 0.2 0.4 0.6 0.8 1

(b) N = 60, T = .25
0 0.2 0.4 0.6 0.8 1

(c) N = 40, T = .75
0 0.2 0.4 0.6 0.8 1

(d) N = 100, T = .75
0 0.2 0.4 0.6 0.8 1
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Figure 1: 1D Compressible Euler (reflective wall). FOM dim: 2048.
Viscosity: 2 × 10−4. Runtime T = .75.
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Example 2 - sod shock tube

(a) N = 20, T = .25
-0.5 -0.25 0 0.25 0.5

(b) N = 100, T = .25
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Figure 2: FOM dim: 2048. Viscosity: 2 × 10−3. Runtime T = .25.
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Example 3 - Gaussian

(a) FOM (b) N = 25, T = 1.0, with enrichment
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Figure 3: 2D compressible Euler (reflective wall). FOM dim: 6400.
Viscosity: 1 × 10−3. Run time T = 1.0. Boundary hyper-reduced by
Carathéodory pruning.
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Summary and acknowledgement

In this work, we

• present an entropy stable reduced order modeling of nonlinear
conservation laws based on high order DG methods.

• develop structure-preserving hyper-reduction techniques
(Carathéodory pruning) which preserve entropy stability.

This work was supported by NSF grant DMS-1943186.
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