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Motivation - entropy stable ROM

(a) Kelvin–Helmholtz instability (b) 1D Burgers’

• High-fidelity simulations require extreme-scale evaluations.

• Reduced order models (ROMs) enable efficient many-query
contexts.

• Both full order models (FOMs) and ROMs tend to blow up
around shocks and turbulence.

Chan et al. (2022) On the entropy projection and the robustness of high order entropy stable
discontinuous Galerkin schemes for under-resolved flows.
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Talk outline

1. Nonlinear conservation laws

2. Full order model (FOM) construction

3. Reduced order model (ROM) construction

4. Numerical Experiments
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Nonlinear conservation laws and entropy stability

• Energy balance for nonlinear conservation laws (Burgers’,
shallow water, compressible Euler + Navier-Stokes).

∂u

∂t
+

d

∑
i

∂f i(u)
∂xi

= 0. (1)

• Continuous entropy conservation: convex entropy function
S(u), “entropy potential” ψ(u), entropy variables v(u)

∫
Ω
vT (∂u

∂t
+

d

∑
i

∂f i(u)
∂xi

) = 0, v(u) = ∂S
∂u

Ô⇒ ∫
Ω

∂S(u)
∂t

+
d

∑
i

(vT f i(u) − ψi(u))∣1
−1
= 0.

(2)
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Entropy conservative flux

• The entropy stability is a generalization of energy stability
principle for nonlinear conservation laws.

• The entropy stable schemes that we utilize rely on special
numerical fluxes. Denote uL,uR the left and right solution
states. The two-point flux fS(uL,uR) is entropy-conservative
if

fS(u,u) = f(u), (consistency)

fS(uL,uR) = fS(uR,uL), (symmetry)

(vL − vR)T fS(uL,uR) = ψ(uL) − ψ(uR). (conservation)

Tadmor. (1987) The numerical viscosity of entropy stable schemes for systems of conservation laws.

Tadmor. (2003) Entropy stability theory for difference approximations of nonlinear conservation laws
and related time-dependent problems.
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Entropy stable high order DG formulation

• A global DG formulation of (1) is

M
du

dt
+

d

∑
i=1

(2(Qi ○Fi)1 +ETBi(f i,∗ − f i(u))) = dissipation,

where (Fi)j,k = f i(uj ,uk) is a matrix of nonlinear flux
evaluations, E is a boundary extraction matrix, and Qi is a
global summation-by-parts (SBP) operator with zero row sum

Qi + (Qi)T = ETBiE, Qi1 = 0.

• We can prove a semi-discrete entropy stability condition

1TM
dS(u)
dt

≤ 0.

Tadmor (1987). The numerical viscosity of entropy stable schemes for systems of conservation laws.
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An example of a global SBP operator

Spy plot of Q1 (1D domain, 3 elements with 5 nodes in each)



Reduced order model (ROM)
construction
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Galerkin projection ROM

• Galerkin projection ROM (VN is the POD basis):

MN
duN

dt
+

d

∑
i=1

(2VT
N(Qi ○Fi)1 +VT

b B
i(f i,⋆ + f i)) = 0,

u ≈VNuN , MN =VT
NMVN , and Vb = EVN .

• To achieve entropy stability, use entropy projection

ũ = u(VNV†
Nv(VNuN)) = u(ṽ), (Fi)j,k = f i(ũj , ũk).

• Still has high computational cost! Needs hyper-reduction.
Hyper-reduction of volume and boundary terms are
independent.
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Hyper-reduction of volume terms

Main idea: find a set of volume nodes and positive weights (I,w)

VT
Ng(VNuN) ≈VN(I, ∶)T diag(w)g(VN(I, ∶)uN).

We use the greedy algorithm for empirical cubature.

Chan (2020). Entropy stable reduced order modeling of nonlinear conservation laws.

Hernádez et al. (2017) Dimensional hyper-reduction of nonlinear finite element models via empirical
cubature.
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Two-step hyper-reduction

Motivation: need to preserve previous properties (SBP and zero row
sum) for hyper-reduced differential operator Q for entropy stability.

(Step 1) Compression: expanded basis approach with intermediate
reduced operator

Q̂t =VT
t QVt,

where Vt is some test basis at least spans R (VN).

(Step 2) Projection (W = diag(w) orthogonal):

Pt = (Vt(I, ∶)TWVt(I, ∶))−1Vt(I, ∶)TW.

Finally, hyper-reduced differential matrix

Q = PT
t Q̂tPt.
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Choice of test basis

• For shocks, POD basis VN poorly samples derivative matrix
(e.g. VT

NQVN ≈ 0).

• Additionally, the error Q −Q should be orthogonal to VN if
we use all nodes for hyper-reduction.

• Choice of test basis for DG methods: VN augmented with

M−1QTVN .
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Theorem of zero "ideal" hyper-reduction error

Theorem

If R(VN), R(M−1QTVN) ⊂R(Vt), then VT
N(Q −Q) = 0

under "ideal" hyper-reduction (using all nodes).
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Figure 1: Comparison of including R(QVN) or R(M−1QVN) in test
basis for 1D Burgers’ equation using DG methods (25 modes).
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Hyper-reduction of boundary terms

Assume hyper-reduction on boundary (Ib,wb) and denote

Bi = diag(ni)diag(wb).

Suppose Vi is some ROM boundary test basis matrix for the ith
coordinate,

1TQiVi = 1TBiVi(Ib, ∶),

is a matrix form of the fundamental theorem of calculus, and we
need to enforce this equality to preserve entropy stability.

A natural way to do this: Carathéodory pruning.
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Carathéodory’s pruning

Carathéodory’s theorem states that, for any M -point positive
quadrature rule exact on space V with dim(V) = N , we can always
generate a new N -point positive rule to preserve all moments.
In our case,

1TBiVi = ∫ ϕij(xk)ni =
M

∑
k=1

wb,jn
i
jϕj(xk).

In practice, we concatenate all dimensions

[diag(n1)V1 ⋯ diag(nd)Vd]

which yields O(dN) hyper-reduced positive boundary weights wb

and node indices Ib.

Van Den Bos, Sanderse, Bierbooms, Van Bussel (2020). Generating nested quadrature rules with
positive weights based on arbitrary sample sets.
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DG ROM Example 1 - 1D reflective wall boundary conditions

(a) N = 20, T = .25
0 0.2 0.4 0.6 0.8 1

(b) N = 60, T = .25
0 0.2 0.4 0.6 0.8 1

(c) N = 40, T = .75
0 0.2 0.4 0.6 0.8 1

(d) N = 100, T = .75
0 0.2 0.4 0.6 0.8 1
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Figure 2: 1D Compressible Euler (reflective wall). FOM dim: 2048.
Viscosity: 2 × 10−4. Runtime T = .75.
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DG ROM Example 1 - 1D reflective wall boundary conditions

Figure 3: Snapshot runtime T = .75. Prediction at T = 1.0 and T = 1.5.
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DG ROM Example 2 - Sod shock tube

(a) N = 20, T = .25
-0.5 -0.25 0 0.25 0.5

(b) N = 100, T = .25
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Figure 4: FOM dim: 2048. Viscosity: 5 × 10−4. Runtime T = .25.
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DG ROM Example 3 - Kelvin-Helmholtz instability
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Figure 5: FOM dim: 25,600. Viscosity: 1 × 10−3. Runtime T = 3.0.
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DG ROM Example 4 - 2D reflective wall boundary conditions

(a) FOM (b) ROM, N = 25
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Figure 6: 2D compressible Euler (reflective wall). FOM dim: 6400.
Viscosity: 1 × 10−3. Run time T = 1.0. Boundary hyper-reduced by
Carathéodory pruning (blue nodes).
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Convective entropy contribution

(c) Example 3 (KHI)
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Figure 7: Convective entropy of DG ROM examples.
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Summary and acknowledgement

In this work, we

• present an entropy stable reduced order modeling of nonlinear
conservation laws based on high order DG methods.

• develop structure-preserving hyper-reduction techniques
(weighted test basis and Carathéodory pruning) which preserve
entropy stability.

This work was supported by NSF grant DMS-1943186.
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