
1 / 46

Entropy stable reduced order modeling of
nonlinear conservation laws using
discontinuous Galerkin methods

Ray Qu

Dept. of Computational Applied Mathematics and Operations Research
Rice University

Master’s Thesis Defense 09/30/24



2 / 46

Motivation - entropy stable ROM

(a) Kelvin–Helmholtz instability (b) 1D Burgers’

• High-fidelity simulations require extreme-scale evaluations.

• Reduced order models (ROMs) enable efficient many-query
contexts.

• Both full order models (FOMs) and ROMs tend to blow up
around shocks and turbulence.

Chan et al. (2022) On the entropy projection and the robustness of high order entropy stable
discontinuous Galerkin schemes for under-resolved flows.
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Nonlinear conservation laws and entropy stability

• Energy balance for nonlinear conservation laws (Burgers’,
shallow water, compressible Euler + Navier-Stokes).

∂u

∂t
+

d

∑
i

∂f i(u)
∂xi

= 0. (1)

• Continuous entropy conservation: convex entropy function
S(u), “entropy potential” ψ(u), entropy variables v(u)

∫
Ω
vT (∂u

∂t
+

d

∑
i

∂f i(u)
∂xi

) = 0, v(u) = ∂S
∂u

Ô⇒ ∫
Ω

∂S(u)
∂t

+
d

∑
i

(vT f i(u) − ψi(u))∣1
−1
= 0.

(2)
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Literature review - entropy stable numerical methods

• Tadmor introduced second order finite volume methods based
on entropy conservative numerical fluxes.

• These were extended to high order FVM on periodic domains
by Fjordholm, Mishra, and Tadmor.

• Combined with summation by parts (SBP) operators intended
for non-periodic boundary conditions, many work further
generalized entropy stable discretization to high order
discontinuous Galerkin (DG) methods.

Tadmor. (1987) The numerical viscosity of entropy stable schemes for systems of conservation laws.

Fjordholm, Mishra, and Tadmor. (2012) Arbitrarily high-order accurate en- tropy stable essentially
nonoscillatory schemes for systems of conservation laws.

Carpenter et al. (2014) Entropy stable spectral collocation schemes for the navier–stokes equations:
Discontinuous interfaces.

Gassner et al. (2016) Shallow water equations: Split-form, entropy stable, well-balanced, and
positivity preserving numerical methods.

Rojas et al. (2021) On the robustness and performance of entropy stable collocated discontinuous
Galerkin methods.
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Literature review - ROM

• Barone and Kalashnikova were the first to combine Galerkin
projection and proper orthogonal decomposition (POD) to
construct ROMs for linearized compressible flows.

• Carlberg et al. implemented the Gauss–Newton with
approximated tensors (GNAT) to stabilize nonlinear reduction.

Barone et al. (2009) Stable Galerkin reduced order models for linearized compressible flow.

Kalashnikova and Barone. (2010) On the stability and convergence of a Galerkin reduced order model
(ROM) of compressible flow with solid wall and far-field boundary treatment.

Carlberg et al. (2013) The GNAT method for nonlinear model reduction: Effective implementation
and application to computational fluid dynamics and turbulent flows.
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Literature review - DG ROM

There’s been increasing interests in DG ROMs.

• Du and Yano investigated the benefits of adaptive DG meshes,
demonstrating substantial reductions in computational costs
while preserving the accuracy of the models.

• Yu and Hesthaven adopted the empirical interpolation method
(DEIM) to hyper-reduce upwinding dissipation.

Du and Yano. (2022) Efficient hyperreduction of high-order discontinuous Galerkin methods:
Element-wise and point-wise reduced quadrature formulations.

Yu and Hesthaven. (2022) Model order reduction for compressible flows solved using the
discontinuous Galerkin methods.
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Literature review - previous work

• However, ROMs in general are not entropy stable and can
experience solution instabilities.

• Chan proposed an entropy stable ROMs scheme of nonlinear
conservation laws using FVM.

• This thesis therefore proposes a way to construct entropy
stable ROMs using high order DG methods, generalizing
Chan’s previous work.

Chan. (2020) Entropy stable reduced order modeling of nonlinear conservation laws.
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Entropy conservative flux

• The entropy inequality is a generalization of energy stability
principle for nonlinear conservation laws.

• The entropy stable schemes that we utilize rely on special
numerical fluxes. Denote uL,uR the left and right solution
states. The two-point flux fEC(uL,uR) is
entropy-conservative if

fEC(u,u) = f(u), (consistency)

fEC(uL,uR) = fEC(uR,uL), (symmetry)

(vL − vR)T fEC(uL,uR) = ψ(uL) − ψ(uR). (conservation)

Tadmor. (1987) The numerical viscosity of entropy stable schemes for systems of conservation laws.

Tadmor. (2003) Entropy stability theory for difference approximations of nonlinear conservation laws
and related time-dependent problems.
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FOM - local formulation

• We use Np Gauss-Lobatto points for both interpolation and
quadrature (collocation method).

• A local DG formulation on cell Dk is

JkM
duk

dt
+ ((Q −QT ) ○Fk)1 +Bf∗ = 0,

f∗ = [fEC(u+1,k,u1,k) 0 ⋯ 0 fEC(u+Np,k
,uNp,k)]

T
.

(3)

For interior cells, u+1,k,u
+

Np,k
come from neighbor cells.

For boundary cells, u+1,k,u
+

Np,k
come from the boundary nodes.

• Summation-by-parts (SBP) property: Q +QT = B.
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FOM - global formulation

ROMs are easier to construct based on a global formulation.
Denote global solution vector uΩ = [u1,u2, ...,uK]T , then

MΩ
duΩ

dt
+ 2(QΩ ○F)1 = 0,

MΩ = I⊗M, F =
⎡⎢⎢⎢⎢⎢⎣

F11 ⋯ F1K

⋮ ⋱ ⋮
FK1 ⋯ FKK

⎤⎥⎥⎥⎥⎥⎦
,

QΩ =
1

2

⎡⎢⎢⎢⎢⎢⎢⎢⎣

S BR −BL

−BL S BR

−BL ⋱ BR

BR −BL S

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, S = (Q −QT ),

BL =
⎡⎢⎢⎢⎢⎢⎣

1

⋰
0

⎤⎥⎥⎥⎥⎥⎦
, BR = BT

L =
⎡⎢⎢⎢⎢⎢⎣

0

⋰
1

⎤⎥⎥⎥⎥⎥⎦
.

Chan and Taylor. (2022) Efficient computation of Jacobian matrices for entropy stable
summation-by-parts schemes.
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FOM - entropy stability

• The global formulation

MΩ
duΩ

dt
+ 2(QΩ ○F)1 = 0

satisfies a semi-discrete entropy conservation condition

1TMΩ
dS(uΩ)

dt
= 0.

For the proof, we utilize QΩ properties.

• We can show the global differential operator QΩ is
skew-symmetric and has zero row sums

QΩ = −QT
Ω, QΩ1 = 0.
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ROM - Galerkin projection with POD basis

• Denote {ϕj(xi)}Nj=1 as our reduced basis and VN as the
general Vandermonde matrix (VN)ij = ϕj(xi).

• Various techniques exist to construct VN , among which we
use proper orthogonal decomposition (POD):

Vsnap =UΣVT , VN =U(∶,1 ∶ N).

• Galerkin projection ROM: assume uΩ ≈VNuN ,

VT
NMΩVN

duN

dt
+ 2VT

N(QΩ ○F)1 = 0. (4)

There are two issues: 1) entropy stability proof fails; 2)
computational cost is not necessarily reduced.

Liang et al. (2000) Proper orthogonal decomposition and its applications-Part I: Theory.

Rowley et al. (2004) Model reduction for compressible flows using POD and Galerkin projection.
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ROM - entropy stability

• Testing ROM formulation with vN =V†
Nv(VNuN),

ṽT (Q ○F)1 = 1

2
∑
ij

Qij(ṽi − ṽj)T fEC(ui,uj)

≠ 1

2
∑
ij

Qij(ψ(ui) − ψ(uj)),

where ṽ =VNvN .

• Why: ṽ are no longer direct mappings from u.

• Solution: we use entropy-projected conservative variables

ũ = u (VNV†
Nv(VNuN)) = u(ṽ).

Chan. (2020) Entropy stable reduced order modeling of nonlinear conservation laws.
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ROM - entropy stability

The final entropy stable ROM is

MN
duN

dt
+ 2VT

N(QΩ ○F)1 = 0,

MN =VT
NMΩVN , Fij = fEC(ũi, ũj),

ũ = u (VNV†
Nv (VNuN)) .

(5)

This formulation still has high computational cost!
Hyper-reduction is needed to reduce computational cost.
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Hyper-reduction - main idea

• Main idea: weighting and sampling strategy to find indices I
and weights W such that for nonlinear function g

VN =VN(I, ∶), VT
Ng (VNuN) ≈VT

NWg (VNuN) .

Farhat et al. (2015) Structure-preserving, stability, and accuracy properties of the energy-conserving
sampling and weighting method for the hyper reduction of nonlinear finite element dynamic models.
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Two-step hyper-reduction: compression

Hyper-reduction can preserve entropy stability if Q is still
skew-symmetric and has zero row sums. To maintain these
properties of Q, we must apply a two-step hyper-reduction.

First step is compression where we use Galerkin projection with
expanded basis approach. Let Vt be a test basis such that

R(VN) ⊂ R(Vt).

Then, the intermediate operator (compression) is defined as

Q̂t =VT
t QΩVt.

Chan. (2020) Entropy stable reduced order modeling of nonlinear conservation laws.
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Two-step hyper-reduction: projection

• Second step is projection: we construct test mass matrix

Mt =Vt(I, ∶)TWVt(I, ∶),

then we can construct a projection matrix

Pt =M−1
t Vt(I, ∶)TW.

Finally, the hyper-reduced differential matrix is defined as

Q = PT
t Q̂tPt = PT

t V
T
t QΩVtPt.

• Q is skew-symmetric by construction, and, if 1 lies in the span
of test basis, VNe = 1, Q̂te = 0 for some coefficient e. Then,

Q1 = PT
t Q̂te = 0.

• Thus, the test basis must span 1 and VN . What else?
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Two-step hyper-reduction: choice of test basis

• For shocks, POD basis VN poorly samples derivative matrix
(e.g. VT

NQΩVN ≈ 0).

• Additionally, the error QΩ −Q should be orthogonal to VN if
we use all nodes for hyper-reduction.

• Choice of test basis for DG methods: we augment test basis to
also span

M−1
Ω QT

ΩVN .
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Two-step hyper-reduction: choice of test basis

Theorem

If R(VN), R(M−1
Ω QT

ΩVN) ⊂ R(Vt), then VT
N (QΩ −Q) = 0

under "ideal" hyper-reduction (using all nodes).
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Figure 1: Comparison of including R(QΩVN) or R(M−1
Ω QT

ΩVN) in
test basis for 1D Burgers’ equation using DG methods (25 modes).
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Two-step hyper-reduction: algorithm and target space

• Numerous methods exist to select hyper-reduced nodes. We
utilize empirical cubature, which chooses hyper-reduced indices
and weights greedily by solving

VT
targetwtarget ≈Vtarget(I, ∶)Tw.

• For our DG scheme, we set

R(Vtarget) = span{VN(∶, i) ○VN(∶, j) for i, j = 1 ∶ N} ,
wtarget =VT

targetJΩwΩ.

• If test mass matrix Vt(I, ∶)TWVt(I, ∶) is ill-conditioned, we
add "stabilizing" points.

Hernádez et al. (2017) Dimensional hyper-reduction of nonlinear finite element models via empirical
cubature.
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Summary of offline two-step hyper-reduction

Given an N -mode reduced basis VN , we then

1. Compute a test basis matrix Vt such that
R(1, VN , M

−1
Ω QT

ΩVN) ⊂ R(Vt), and compute compressed
intermediate operator Q̂t =VT

t QVt.

2. Compute a hyper-reduced quadrature using greedy algorithm
to obtain a set of hyper-reduced nodes I and new quadrature
weights w, with stabilizing points if necessary to ensure that
the test mass matrix is non-singular.

3. Construct the hyper-reduced nodal differentiation matrix
Q = PT

t QtPt using the projection Pt =M−1
t Vt(I, ∶)TW onto

the test basis.
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Hyper-reduced ROM

The hyper-reduced ROM is

MN
duN

dt
+ 2VT

N (Q ○F)1 = 0

VN =VN(I, ∶), MN =VT
NWVN ,

P =M−1
N VT

NW, vN = Pv (VNuN) ,
ṽ =VNvN , ũ = u(ṽ), Fij = fEC(ũi, ũj),

(6)

which semi-discretely conserves the sampled and weighted average
entropy

1TW
dS (VNuN)

dt
= 0.
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FOM - weakly imposed BC

From local formulation

JkM
duk

dt
+ ((Q −QT ) ○Fk)1 +Bf∗ = 0,

we can construct a global formulation

MΩ
du

dt
+ 2(QΩ ○F)1 +BΩf

∗

Ω = 0,

QΩ =
1

2

⎡⎢⎢⎢⎢⎢⎢⎢⎣

S BR

−BL S BR

−BL ⋱ BR

−BL S

⎤⎥⎥⎥⎥⎥⎥⎥⎦

+ 1

2

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−1
0

⋱
1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

where QΩ satisfies global SBP property QΩ +QT
Ω = BΩ.

Under proper boundary conditions, this still conserves entropy.

Chen and Shu. (2017) Entropy stable high order discontinuous Galerkin methods with suitable
quadrature rules for hyperbolic conservation laws.
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ROM - Hybridized operator

1D hyper-reduced operator Q satisfies a generalized SBP property

Q +QT = ETBE,

B = [−1
1
] , Vbt = [

Vt(1, ∶)
Vt(end, ∶)] , E =VbtPt.

To impose nonlinear boundary conditions, we employ a hybridzed
SBP operator

Qh =
1

2
[Q −Q

T ETB

−BE B
] ,

satisfying a block SBP property

Qh +QT
h = [

0

B
] = Bh.

Chan. (2018) On discretely entropy conservative and entropy stable discontinuous Galerkin methods.
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Hyper-reduced ROM - weakly imposed BC

One can show

Qh1 =
1

2
[Q1 −QT1 +ETB1

−BE1 +B1
] = 0.

Denote

Vb = [
VN(1, ∶)
VN(end, ∶)] , Vh = [

VN

Vb
] .

Then we can build the following hyper-reduced ROM

MN
duN

dt
+ 2VT

h (Qh ○F)1 +VT
b B(f

∗

b − f(ũb)) = 0

VN =VN(I, ∶), MN =VT
NWVN , , P =M−1

N VT
NW,

vN = Pv (VNuN) , ṽ =VhvN , ṽb =VbvN ,

ũ = u(ṽ), ũb = u(ṽb), Fij = fEC(ũi, ũj).
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Hyper-reduced ROM - weakly imposed BC

By the block SBP property of Qh, previous hyper-reduced ROM
formulation is equivalent to

MN
duN

dt
+VT

h ((Qh −QT
h ) ○F)1 +V

T
b Bf∗ = 0, (7)

which admits entropy conservation for entropy conservative
boundary flux

1TW
dS(VNuN)

dt
= 0.
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FOM - global formulation

For a periodic domain with dimension d,

MΩ
duΩ

dt
+

d

∑
i=1

2 (Qi
Ω ○Fi)1 = 0, (8)

Explicit form are complicated, but for vectors u, v, Qi
Ω satisfies

vTQi
Ωu = ∑

k

(∫
Dk

∂u

∂xi
v + ∫

∂Dk

1

2
JuKniv) . (9)

To follow similar entropy stability proof, we show

vTQi
Ωu = −uTQi

Ωv, (skew-symmetry)

and Qi
Ω has zero row sums.
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Hyper-reduced ROM - dimension by dimension

Applying hyper-reduction dimension by dimension

Qi = (Pi
t)T (Vi

t)TQi
ΩV

i
tP

i
t,

we get the entropy conservative hyper-reduced ROM

MN
duN

dt
+

d

∑
i=1

(2VT
N (Qi ○Fi)1) = 0

VN =VN(I, ∶), MN =VT
NWVN ,

P =M−1
N VT

NW, vN = Pv (VNuN) ,
ṽ =VNvN , ũ = u(ṽ), Fi

jk = f
i
EC(ũj , ũk).

(10)
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FOM - weakly imposed BC

We can extend 1D formulation

MΩ
du

dt
+ 2(QΩ ○F)1 +BΩf

∗ = 0

to higher dimensions:

MΩ
duΩ

dt
+

d

∑
i=1

(2(Qi
Ω ○Fi)1 +Bi

Ωf
i,∗) = 0. (11)

We notice that the hyper-reduction on volume and boundary flux
terms are independent. We can use previous approach to
hyper-reduce volume terms, but must now introduce boundary
hyper-reduction.
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Hyper-reduced ROM - weakly imposed BC

We first derive conditions for boundary hyper-reduction (Ib,wb)
which guarantee entropy stability. Denote

Bi = diag (ni)Wb, Vbt =Vbt (Ib, ∶) , Ei =Vi
btP

i
t.

The hybridized SBP operator along the ith coordinate is

Qi
h = [

Qi − (Qi)T (Ei)T Bi

−BiEi Bi
] .

Hyper-reduced ROM:

MN
duN

dt
+

d

∑
i=1

(VT
h ((Q

i
h − (Q

i
h)

T ) ○Fi)1 +VT
b B

if i,∗) = 0. (12)



31 / 46

Boundary hyper-reduction

To preserve entropy stability, we need to ensure that Qi
h1 = 0. In

general,

Qi
h1 = [

−(Qi)T 1 + (Ei)T Bi1

0
] .

Note that

(Qi)T 1 = (Ei)T Bi1 ⇐⇒ 1TQi
ΩV

i
t = 1TBiVi

bt .

We need to enforce this equality (matrix form of the fundamental
theorem of calculus) for boundary hyper-reduction.
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Boundary hyper-reduction - Carathéodory pruning

Carathéodory’s theorem states that, for any M -point positive
quadrature rule exact on N -dimensional space span{v1, ..., vN}, we
can always generate a new N -point interpolatory positive rule
which preserves all moments.
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Boundary hyper-reduction - Carathéodory pruning

In matrix form,

VTw =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

v1(x1) v1(x2) ⋯ v1(xM)
v2(x1) v2(x2) ⋯ v2(xM)
⋮ ⋮ ⋱ ⋮

vN(x1) vN(x2) ⋯ vN(xM)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

w1

w1

⋮
wM

⎤⎥⎥⎥⎥⎥⎥⎥⎦

=m.

Carathéodory’s theorem then states that m lies in the convex hull
of a subset of N columns of VT .
In our case,

1TBiVi
bt = ∫ ϕibt,j(xk)ni = ∑

k=1

wb,jn
i
jϕbt,j(xk).

We can concatenate all dimensions such that

V = [diag (n1)V1
bt ⋯ diag (nd)Vd

bt]
T
.

Van Den Bos, Sanderse, Bierbooms, Van Bussel (2020). Generating nested quadrature rules with
positive weights based on arbitrary sample sets.
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Discretization of artificial viscosity

To remove spurious oscillations, we add artificial viscosity

ϵ∆u

to the system. We utilize the Bassi-Rebay-1 (BR-1) scheme to
approximate the Laplacian. On each element Dk, we define σ ≈ ∂u

∂x

as

σ = (JkM)−1 (Qu +VT
f uflux) , ∆u ≈Qσ +VT

f σflux,

where uflux and σflux are defined by using the central flux.

Manzanero et al. (2018). The bassi rebay 1 scheme is a special case of the symmetric interior penalty
formulation for discontinuous Galerkin discretisations with gauss–lobatto points.
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Discretization artificial viscosity

• Since the interactions at the element faces are already
accounted for our global differentiation matrix QΩ,
implementing the BR-1 scheme is straightforward by applying
the global operator QΩ twice

σΩ =M−1
Ω QΩuΩ, ∆uΩ ≈QΩσΩ.

For ROMs, we simply use Galerkin projection without
hyper-reduction. For high-dimensional domains, we sum up
viscosity terms over each dimension.

• We cannot prove entropy stability of the viscous term even for
FOMs, but we observe entropy dissipation for all numerical
experiments.
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FVM and DG ROMs comparison

• We first compare the ROM performance between FVM and
DG methods by examining the 1D compressible Euler
equations over periodic domain [−1,1].

• The initial condition is an isentropic Gaussian wave such that

ρ = 1 + 0.1e−25x
2

, u = 0.1 sin(πx), p = ργ .

We add artificial viscosity with coefficient 5 × 10−4.
• The FOM dim is fixed at 1,024. Simulations are run until two

distinct final times T = 0.1,1.0.
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FVM and DG ROMs comparison

Error/HR nodes p = 0 (FVM) p = 3 p = 7
N = 10 3.04e-5/ 28 2.98e-5/ 32 3.04e-5/ 28
N = 15 2.14e-7/ 45 3.65e-7/ 75 2.21e-7/ 45
N = 20 5.08e-9/ 77 6.75e-8/ 139 6.00e-9/ 90

Table 1: 1D compressible Euler, T = 0.1

Smooth solution at T = 0.1. Both schemes have similar accuracy,
while DG yields more nodes for certain interpolation degree and
number of modes.
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FVM and DG ROMs comparison

Error/HR nodes p = 0 (FVM) p = 3 p = 7
N = 20 2.57e-5/ 48 2.57e-5/ 66 2.57e-5/ 48
N = 30 1.34e-6/ 74 1.30e-6/ 131 1.37e-6/ 74
N = 40 2.83e-8/ 101 3.65e-8/ 284 3.36e-8/ 140

Table 2: 1D compressible Euler, T = 1.0

System now exhibits a shock at T = 1.0. Both schemes still achieve
similar accuracy, but DG still yields more nodes especially for p = 3.
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DG ROM Example 1 - 1D reflective wall boundary conditions

(a) N = 20, T = .25
0 0.2 0.4 0.6 0.8 1

(b) N = 60, T = .25
0 0.2 0.4 0.6 0.8 1

(c) N = 40, T = .75
0 0.2 0.4 0.6 0.8 1

(d) N = 100, T = .75
0 0.2 0.4 0.6 0.8 1
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Figure 2: 1D Compressible Euler (reflective wall). FOM dim: 2048.
Viscosity: 2 × 10−4. Runtime T = .75.
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DG ROM Example 2 - Sod shock tube

(a) N = 20, T = .25
-0.5 -0.25 0 0.25 0.5

(b) N = 100, T = .25
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Figure 3: FOM dim: 2048. Viscosity: 5 × 10−4. Runtime T = .25.
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DG ROM Example 3 - Kelvin-Helmholtz instability

(a) FOM
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(c) N = 40
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(b) N = 30
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(d) N = 50
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Figure 4: FOM dim: 25,600. Viscosity: 1 × 10−3. Runtime T = 3.0.
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DG ROM Example 4 - 2D reflective wall boundary conditions

(a) FOM (b) ROM, N = 25
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Figure 5: 2D compressible Euler (reflective wall). FOM dim: 6400.
Viscosity: 1 × 10−3. Run time T = 1.0. Boundary hyper-reduced by
Carathéodory pruning (blue nodes).
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Convective entropy contribution

(c) Example 3 (KHI)
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Figure 6: Convective entropy ∣vT
NVT

h (Qh ○F)1∣ of DG ROMs.
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Summary

In this work, we present an entropy stable reduced order modeling
of nonlinear conservation laws based on high order DG methods, in
which we develop structure-preserving hyper-reduction techniques
to preserve entropy stability. Specifically,

• we incorporate weighted test basis for volume hyper-reduction
accuracy in our DG scheme;

• we generalize dimension-by-dimension hyper-reduction;

• we utilize Carathéodory pruning for boundary hyper-reduction.
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Future work - interface flux dissipation

For future work, we plan to

• incorporate interface flux dissipation by developing entropy
stable hyper-reduction of dissipation terms.

Yu and Hesthaven. (2022) Model order reduction for compressible flows solved using the
discontinuous Galerkin methods.
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Future work - domain decomposition

For future work, we plan to

• implement domain decomposition (DD) to enhance accuracy
and efficiency and extend numerical experiments to
compressible Navier-Stokes equations.

Hoang, Choi, and Carlberg. (2021) Domain-decomposition least-squares Petrov–Galerkin (DD-LSPG)
nonlinear model reduction.

Diaz, Choi, and Heinkenschloss. (2024) A fast and accurate domain decomposition nonlinear manifold
reduced order model.


	Nonlinear conservation laws
	Literature review
	FOM and ROM construction on 1D periodic domains
	FOM and ROM construction on 1D domains with weakly imposed boundary conditions
	Extension to higher-dimensional domains
	Discretization of artificial viscosity
	Numerical experiments
	Summary and future work

