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Abstract

§ Extension of entropy stable reduced order models (ROMs) of
nonlinear conservation laws from finite volume methods [1] to
high order discontinuous Galerkin (DG) methods.

§ Hyper-reduction techniques: gappy proper orthogonal
decomposition (gappy-POD) and Carathéodory pruning.

Background

§ Nonlinear conservation laws with conservative variables
u P Rn on domain Ω

Bu

Bt
`

d
ÿ

i“1

Bfipuq

Bxi
“ 0, px, tq P Ω ˆ r0,8q. (1)

§ Many systems admit an entropy inequality with convex
entropy function Spuq

ż

Ω

BSpuq

Bt
dx `

d
ÿ

i“1

ż

BΩ
pvTfipuq ´ ψipuqqni

ď 0. (2)

§ Entropy stability is a generalization of energy stability.

Reduced order modeling

§ The global DG formulation of (1) is

M
du

dt
`

d
ÿ

i“1
p2pQi

˝ F i
q1 ` Bif i,‹

q “ 0, (3)

where pF i
qj,k “ fipuj,ukq is the entropy conservative flux,

Qi is a summation by parts (SBP) operator with Qi1 “ 0.
§ Galerkin projection ROM (VN is the POD basis):

MN
duN

dt
`

d
ÿ

i“1
p2V T

N pQi
˝ F i

q1 ` V T
b Bif i,‹

q “ 0, (4)

u « VNuN and Vb is a boundary submatrix of VN .
§ Due to nonlinear terms, the cost of (4) still scales with the

dimension of the FOM. We will construct a hyper-reduced
ROM from hyper-reduced operators ĎVN , ĎQi, ĎVb, and ĎBi:

ĚMN
duN

dt
`

d
ÿ

i“1
pĎV T

N pp ĎQi
´ ĎQi,T

q ˝ F i
q1 ` ĎV T

b
ĎBif i,‹

q “ 0.

Hyper-reduction of volume terms

First, we utilize a greedy algorithm [3] to construct hyper-reduced indices I and weights w for a target space
V T

targetwtarget « VtargetpI, :qTw, wtarget,w ą 0, ĚMN “ VNpI, :qTdiagpwqVNpI, :q. (5)
Then, we use a two-step "compress and project" procedure to build Qi

t, starting with a test basis V i
t such that

1, VN , and QiVN are in its range
xQi
t “ pV i

t q
TQiV i

t ,
ĎV i
t “ V i

t pI, :q, Qi
t “ ppĎV i

t q
:
q
T

xQi
tp

ĎV i
t q

: (gappy-POD). (6)
ĎQi is the hybridized SBP differentiation operator [2] along the ith coordinate

ĎQi
“

1
2

«

Qi
t ´ pQi

tq
T

ĎET
i

ĎBi

´ ĎBi
ĎEi

ĎBi

ff

. (7)

Hyper-reduction of boundary terms using Carathéodory pruning

Define Ei
“ V i

btP
i
t , where V i

bt is a boundary submatrix of V i
t and Bi

“ diagpni
qdiagpwbq. Our goal is to find

hyper-reduced boundary matrix ĎBi such that
1T ĎBi

ĎEi
“ 1TBiEi

“ 1TQi
t. (8)

Carathéodory’s Theorem states that, given any positive quadrature rule on a space V with dimpV q “ N , we can
generate an N -point interpolatory positive rule that preserves all moments. Therefore, from

1TBiVbt “

ż

ϕt,jn
i

“
ÿ

k

wb,jn
i
jϕt,jpxkq, (9)

we are able to select N boundary nodes Ib with new positive weights Ďwb from it to construct
ĎV i
bt “ V i

btpIb, :q, ĎEi “ ĎV i
btP

i
t ,

ĎBi
“ diagpni

qdiagp Ďwbq, 1T ĎBi
ĎEi

“ 1TBiEi. (10)

Numerical experiments

Figure: Density ρ. FOM solutions are displayed using line plots, while ROM solutions are indicated on hyper-reduced nodes in red.

1D compressible Euler equations with reflective wall boundary conditions, using a FOM with 256 elements,
polynomial degree N “ 4, and an artificial viscosity term ϵ∆u with ϵ “ 2e ´ 4.

Numerical experiments

Figure: Density ρ at T “ 3.0 in Kelvin-Helmholtz instability simulation: FOM
(left) vs. ROM (125 modes, right).

§ Smoothed Kelvin-Helmholtz instability: 2D compressible
Euler equations on a periodic domain r´1, 1s

2 of 50 ˆ 50
elements and polynomial degree N “ 4.

§ We add viscosity with ϵ “ 1e ´ 3, run the simulation until
T “ 3.0, and use 100 snapshots enriched with entropy
variables for POD modes. We employ 125 modes for ROM,
which remains stable despite under-resolution.
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§ We present an entropy stable reduced order modeling of
nonlinear conservation laws based on high order DG methods.

§ We develop structure-preserving hyper-reduction techniques
which preserve entropy stability.
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